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This paper discusses autoregressive random field (ARF)
models and derives a unilateral representation driven by
uncorrelated noise.r<\\
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1. Introduction

In this paper we shall deal with a subset of stationary

(wide sense) processes with absolutely continuous spectral

distributions which are rational functions of the two guan~
ie ie6
tities e l,e 2. More precisely we shall study the process

x[m n]eRd, [m,n]€Z xZ on an infinite lattice, with covariance
14
structure
* =
E(x[m+s,n+t]x [m,n])
1 -is6._-ith

/"1 e 1 2f(01.92)d61d02. (1.1)
AT =TT

and zero mean.

We assume f(el,ez)'l exists and is finite at every (61,62),

and
' o£(8.,0,)"t = (a + I . a cos (m, 8,+m,6.))
1’72 {0,01 [mlrmzleNP [ml,mzl 272
(1.2)
a Px-} are p x p matrices satisfying at# =a .
[olol [mllm2] [slt] [-sl-t]

" V* is the complex conjugate transpose of the vector V. NP

denotes the deleted p x p neighborhood of [0,0], that is,
{[ml,mzl:Imllsp,lmzlsp,[ml,mZI#[O,O]}.
Models of this type have been used as models of texture
images (1,2]. 1In the case where x[ ] is a Gaussian process,
o pe

it can be shown [3] that x[ ,.] is a Gauss-Markov process with

respect to Np: that is,
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P-ab (X llx[s't]p[sltl#[mln]) =

[m,n

Prob (X 1|x ],[s,tlelm,n]+Np) (1.3)

{m,n [s,t
In fact, the process with spectral density f(el,ez) satisfies
the conditional model

E(x[m,nllx[s't]l[svt]#[m,n]) =

z

-1
-a ( ) (1.4)
to,0] (m, ,m,]enP 2]

a X

[ml,mZ] [m—ml,n m
Conditional models of this type have been found useful in
the modeling of spatial patterns [7]. It is also known (see,

for example, page 26 of (7]) that no finite one-sided repre-

sentation for this model exists of the type (with S finite

subset of Z x Z)

I

b X +
[010] [m,n]
[ml,mzles

b[ml.m2]x[mrml.n-m2]=z[m,nl

where 2 is a process of uncorrelated noise.

(m,n]
The purpose of this paper is to show that the collection

of spectral representations of the process x[ ] along one

.re
of the coordinates is representable as a one~-sided finite
order "time series" model along the other coordinate. Thus,
in this sense it is seen that all ARF's have a "causal"
representation.

This method of producing a one-sided representation can be

contrasted with the so-called NSHP (non-symmetric half plane)

representation of (3] and (6].
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2. A Unilateral Representation

We consider the process x[ ] with spectral density
o ge

-1
£(6,,6,)=(a +z a cos(m,6.4m.06,.)] —,
1772 {0,0] {ml.mZ]&Np [ml,mzq 11 7272
(2.1)
which is a p-th order autoregressive process.
-i6 -i6 '
Let z=e 1,w=e 2, and rewrite the above equality as
..1___ P
f(el'ez) ao(w)+a1(w)z+...+ap(w)z
-l —p
* *
+al(w)z +...+ap (wz *.

For each fixed w we can consider f(el'ez) as a spectral
density in 61. We next produce a causal factorization of
f(01,02) in the form

-1_
£(0,,6,) "= (2.2)
W) +c (W2 heL e (W) 27P] e, (W) +ey (W) z+. . .+, (W) ZP]
[co \' c,{wz . cp W)z ][co w)+c) (W) z+... cp w)z*],
~i62

where, for each w=e ’ co(w)+cl(w)g+...+cp(w)£p has no
roots inside and on the complex unit circle |[&[|=1. ([4],
page 65). '

We next consider the spectral representation of the
process X[ ] along the second coordinate:

e g
T,
- im®
Xin,m=_fe7 axy o), (2.3)

where Yn(e) is the spectral representation of the process

X ({51, page 481).

(n,.]°
Next expand each of co(w),...,cp(w) in a Fourier expansion




cl = -

ik6
c (w)-f e
k==

2 A
c[j'k].

Then ([4], page 61) the process satisfies the autoregression

A
Ij,k]x[n-j,m+k]=z[n.m] (2.4)

OM'U

z
j=0 k=-

where Z[ ] is an uncorrelated white noise process. Let
s g e
wn(e) be the spectral representation of the process Z[n'.]:

" (2.5)

f el mo

[n,m] dwn(e).

We conclude with the following
Theorem: Let {Yn(e)}, {wn(e)} be the spectral representations
of the processes defined above. They satisfy the stochastic

differential equation

b ¢ (e 1% ay . (0)=aW_(o) (2.6)
W EoCk n-k n .

Proof: 1In the above autoregressive representation we sub-

stitute the spectral integrals and get (after combining terms)

P % A i(m+k)6 ime
vm: S7{I ® ¢, ay_ . (0)-e*™aw =
-1 j=0 k=-w [3.,%1¢ n-j () =e A, (0)] =0
Factoring out elme we have

T .
vm: ;™™ )aY, _;(6)=dW_ (8)} =0
j

-7

L
a
)

As any continuous function £(6),0€[-7n,7)can be approximated in

mean square by linear combinations of elme, the result follows.
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3. The finite version.

The above calculation can be carried out in the case

where we have a finite number of values

X[n'O]’...‘ x[n'M-l]
in the vertical direction.
_.2mi/M s . .
Let wae . The finite versions of the above spectral

representations are as follows:

M-1
x[:.l,m]= E “’Mka(n,k) (3.1)
k=0
or 1 M-l -km
MY (n,k)=—g—E, M Xy, 4 (3.2)

inat is, AY(n,*) is the finite Fourier transform of the data

X[n,.]' Similarly
1 M-1
AW(n,k)=~— I -km
The finite analogue of the above Theorem is
M-l mk P -k
Y {z b.(wM )AY(n-j,k) - AW(n,k)} =0
k=0 M j=0 J
concluding with
P -k
£ b. (¢, )AY(n-j,k)=AW(n,k). (3.4)
j=0 3 M
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